
PRINCIPLES OF ANALYSIS
TOPIC IV: SEQUENCES

PAUL L. BAILEY

Abstract. We define sequences, convergence of sequences, bounded se-

quences, monotone sequences, limits superior and inferior, and Cauchy se-

quences. We prove the Monotone Convergence Principle and the Cauchy Con-
vergence Criterion.

1. Sequences

Definition 1. Let A be a set. A sequence in A is a function a : N → A. We write
an to mean a(n), and we write (an)∞n=1, or simply (an), to denote the function a.

We are primarily interested in sequences of real numbers, i.e., sequences in R.

Definition 2. Let (an)∞n=1 be a sequence of real numbers and let p ∈ R. We say
that (an)∞n=1 converges to p

∀ε > 0 ∃N ∈ N 3 n ≥ N ⇒ |an − p| < ε.

In this case, we say that p is a limit point of (an)∞n=1.

Proposition 1. Let (an)∞n=1 be a sequence in R and let p1, p2 ∈ R.
If (an)∞n=1 converges to p1 and to p2, then p1 = p2.

Proof. Suppose not, and set d = |p1 − p2|; then d is positive. Let ε = d
4 . Then by

definition of limit, there exist positive integers N1 and N2 such that n ≥ N1 implies
that |an − p1| < ε, and n ≥ N2 implies that |an − p2| < ε.

Let N = max{N1, N2}. Then for n ≥ N ,

d = |p1 − p2|
= |p1 − an + an − p2|
= |p1 − an|+ |an − p2| by the Triangle Inequality

= |an − p1|+ |an − p2|
≤ ε + ε

=
d

2
.

This is a contradiction; thus p1 = p2. �

Thus limits are unique when they exist, justifying the article the limit instead of
“a limit point”. We write p = limn→∞ an, or simply p = lim an, or even an → p to
denote the fact that (an)∞n=1 converges to p. If a sequence has a limit, we say that
it is convergent; otherwise it is divergent.

Date: November 22, 2005.

1



2

Let (an)∞n=1 be a sequence of real numbers. The image of (an)∞n=1 is the image
of the sequence as a function, that is, it is the set

{an | n ∈ N}.
Note that there is much more information in a sequence than in its image; for
example, the sequences (1+(−1)n)∞n=1 and (0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, . . . ) have
the same image; the common image is {0, 2}, a set containing two elements.

2. Arithmetic of Sequences

Proposition 2. Let (an)∞n=1 be a convergent sequence in R, and let k ∈ R. Then
the sequence (kan)∞n=1 converges, and

lim
n→∞

kan = k lim
n→∞

an.

Proof. Let ε > 0, and let p = limn→∞ an. Since an → p, there exists N ∈ N such
that

|an − p| < ε

k
.

Then
|kan − kp| < ε.

�

Proposition 3. Let (an)∞n=1 and (bn)∞n=1 be convergent sequences of real numbers.
Then the sequence (an + bn)∞n=1 converges, and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn.

Proposition 4. Let (an)∞n=1 and (bn)∞n=1 be convergent sequences of real numbers.
Then the sequence (anbn)∞n=1 converges, and

lim
n→∞

(anbn) = ( lim
n→∞

an)( lim
n→∞

bn).

Proposition 5. Let (an)∞n=1 be a convergent sequence of nonzero real numbers
whose limit is not zero. Then the sequence ( 1

an
)∞n=1 converges, and

1
limn→∞ an

= lim
n→∞

( 1
an

)
.
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3. Bounded Sequences

Definition 3. Let (an)∞n=1 be a sequence in R. We say that (an) is bounded above
if there exists a ∈ R such that a ≥ sn for every n ∈ N. We say that (an) is bounded
below if there exists b ∈ R such that b ≤ an for every n ∈ N. We say that (an)∞n=1

is bounded if it is bounded above and bounded below.

Equivalently, (an)∞n=1 is bounded if there exists b > 0 such that an ∈ [−b, b] for
every n ∈ N.

Proposition 6. Every convergent sequence in R is bounded.

Proof. Let (an)∞n=1 be a convergent sequence with limit p. Let N be so large that
for n ≥ N we have |an − p| < 1. And |p| to both sides of this inequality and apply
the triangle inequality to get, for every n ≥ N ,

|an| ≤ |an − p|+ |p| < 1 + |p|.
There are only finitely many terms of the sequence between a1 and aN−1; set

M = max{|a1|, |a2|, . . . , |aN−1|, 1 + |p|}.
Then M ≥ an for every n ∈ N, so (an)∞n=1 is bounded. �

Proposition 7. Let (sn)∞n=1 be a sequence in R which converges to p, and let
a, b ∈ R with a < b.

(a) If sn ≥ a for every n ∈ N, then p ≥ a.
(b) If sn ≤ b for every n ∈ N, then p ≤ b.
(c) If sn ∈ [a, b] for every n ∈ N, then p ∈ [a, b].

Proof. In this proof, we use the fact that if x ≤ y + ε for every ε > 0, then x ≤ y.
To see this, suppose that x > y, and let ε = x−y

2 ; then y + ε = x− ε, so x > y + ε.
Suppose that sn ≥ a for every n ∈ N. To show that a ≤ p, it suffices to show

that a ≤ p+ ε for every ε > 0. Thus let ε > 0; since (sn) converges to p, there exists
N ∈ N such that n ≥ N ⇒ |sn− p| < ε. Thus −ε < sn− p < ε, so sn < p+ ε. Since
a ≤ sn, transitivity of order implies that a < p + ε. Since this is true for every
ε > 0, we have a ≤ p.

That p ≤ b can be proved similarly.
Finally, if sn ∈ [a, b], we have a ≤ sn ≤ b for every n ∈ N. Combining parts (a)

and (b) tells us that a ≤ p ≤ b, which is equivalent to p ∈ [a, b]. �

Proposition 8. Let (an)∞n=1 and (bn)∞n=1 be sequences in R such that an ≤ bn for
every n ∈ N. If they both converge, then lim an ≤ lim bn.

Proof. Let a = lim an and b = lim bn; suppose by way of contradiction that b < a.
Set ε = b−a

2 ; then there exists N1 ∈ N such that n ≥ N1 implies |an−a| < ε/2, and
there exists N2 ∈ N such that n ≥ N2 implies |bn−b| < ε/2. Let N = max{N1, N2};
then by an application of the triangle inequality, bn < an, a contradiction. �
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Proposition 9. (Squeeze Law)
Let (an), (bn), and (sn) be sequences in R such that an ≤ sn ≤ bn for all n ∈ N.
If lim an = lim bn = p, then (sn) converges to p.

Proof. Let ε > 0. Note that for any n ∈ N, since an ≤ sn ≤ bn we have

|sn − an| = sn − an ≤ bn − an = |bn − an|.
Since lim an = p, there exists N1 ∈ N such that |an − p| < ε

3 for n ≥ N1.
Since lim bn = s, there exists N2 ∈ N such that |bn − p| < ε

3 for n ≥ N2.
Let N = max{N1, N2}. Now for n ≥ N , we have

|bn − an| = |bn − p + p− an| ≤ |bn − p|+ |an − p| < ε

3
+

ε

3
=

2ε

3
.

Then for n ≥ N , we have

|sn−p| = |sn−an +an−p| ≤ |sn−an|+ |an−p| ≤ |bn−an|+ |an−p| < 2ε

3
+

ε

3
= ε.

This shows that lim sn = p. �

4. Monotone Sequences

Definition 4. Let (sn)∞n=1 be a sequence of real numbers.
We say that (sn) is increasing if

m ≤ n ⇒ sm ≤ sn.

We say that (sn) is decreasing if

m ≤ n ⇒ am ≥ an.

We say that (sn) is monotone if it is either increasing or decreasing.

Note that to check if the sequence (sn) is increasing, if suffices to check that
sn+1 ≥ sn for every n ∈ N. In this case, the definition above will follow by
induction. The analogous comment holds for the condition of decreasing.

Theorem 1. (Monotone Convergence Principle)
Every bounded monotone sequence of real numbers converges.

Proof. Suppose that (sn)∞n=1 is bounded. Also assume that it is increasing; the
proof for decreasing will be analogous. Let S = {sn | n ∈ N} be the image of the
sequence, and set u = supS. Since S is bounded, u ∈ R. Clearly sn ≤ u for every
n ∈ N. We show that lim sn = u.

Let ε > 0. Since u− ε is not an upper bound for S, there exists s ∈ S such that
u − ε < s ≤ u. Now s = sN for some N ∈ N, and since (sn)∞n=1 is increasing, we
have u− ε < sn < u for every n ≥ N . Thus |sn− u| < ε for n ≥ N ; this shows that
(sn) converges to u. �
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5. Limits Superior and Inferior

Proposition 10. Let (sn)∞n=1 be a bounded sequence of real numbers. Set

uN = sup{sn | n ≥ N} and vN = inf{sn | n ≥ N}.
Then (un)∞n=1 is a bounded decreasing sequence and (vn)∞n=1 is a bounded increasing
sequence. Each of these sequences converges.

Proof. Since (sn) is a bounded sequence, the sets {sn | n ≥ N} are bounded sets,
so uN and vN exist as real numbers for all N ∈ N, and in fact if S = {sn | n ∈ N},
then inf S ≤ vN ≤ uN ≤ supS for every N ∈ N. Thus the sequences (uN ) and
(vN ) are bounded sequences.

To show that these sequences are monotone, we use the general fact that if
A,B ⊂ R and B ⊂ A, then supB ≤ supA and inf B ≥ inf A.

In our case, select N ∈ N and let A = {sn | n ≥ N} and B = {sn | n ≥ N + 1}.
Then B ⊂ A, so supB ≤ supA, which is to say, uN+1 ≤ uN . Thus (uN ) is a
decreasing sequence. Similarly, (vN ) is an increasing sequence.

Thus (uN ) and (vN ) are bounded monotone sequences, and so are convergent by
the Monotone Convergence Principal. �

Definition 5. Let (sn)∞n=1 be a bounded sequence of real numbers. Define the
limit superior of (sn) to be

lim sup sn = lim
N→∞

sup{sn | n ≥ N}

and the limit inferior of (sn) to be

lim inf sn = lim
N→∞

inf{sn | n ≥ N}.

Proposition 11. Let (sn)∞n=1 be a bounded sequence of real numbers.
Then lim inf sn ≤ lim sup sn.

Proof. For every N ∈ N, we have inf{sn | n ≥ N} ≤ sup{sn | n ≥ N}. The result
follows from Proposition 8. �
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Proposition 12. Let (sn)∞n=1 be a sequence of real numbers.
(a) If (sn) converges to s, then lim inf sn = s = lim sup sn.
(b) If lim inf sn = lim sup sn, then (sn) converges.

Proof. We again use the fact that if x ≤ y + ε for every ε > 0, then x ≤ y.
Suppose that (sn)∞n=1 converges to a real number s. Let ε > 0. We wish to show

that lim sup sn ≤ s + ε for every ε > 0, whence lim sup sn ≤ s.
Since sn → s, there exists N ∈ N such that |sn−s| < ε for n ≥ N . It follows that

sup{sn | n ≥ N} < s+ ε. Since (sup{sn | n ≥ N})∞N=1 is a decreasing sequence, we
have lim sup sn < s + ε. Therefore lim sup sn ≤ s.

Similarly, s ≤ lim inf sn, so

s ≤ lim inf sn ≤ lim sup sn ≤ s,

so
lim inf sn = s = lim sup sn.

Now suppose that lim inf sn = lim sup sn, and label this common value s. We
want to show that lim sn = s.

Let ε > 0. Since s = lim sup sn, there exists N1 ∈ N such that

| sup{sn | n ≥ N1} − s| < ε.

In particular, sup{sn | n ≥ N1} < s + ε, so sn < s + ε for n ≥ N1. Similarly,
since s = lim inf sn, there exists N2 ∈ N such that sn > s − ε for n ≥ N2. Let
N = max{N1, N2}. Then for n ≥ N , we have s−ε < sn < s+ε, that is, |sn−s| < ε.
Thus sn → s. �
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6. Cauchy Sequences

Let (sn)∞n=1 be a sequence of real numbers. We say that (sn)∞n=1 is a Cauchy
sequence if

∀ε > 0 ∃N ∈ N 3 m,n ≥ N ⇒ |sm − sn| < ε.

Proposition 13. Let (sn)∞n=1 be a Cauchy sequence. Then (sn)∞n=1 is bounded.

Proof. Since (sn)∞n=1 is Cauchy, there exists N ∈ N such that if m,n ≥ N , then
|sm − sn| < 1. In particular, for every n ≥ N , we have |sn − sN | < 1. Set

M = max{s1, s2, . . . , sN−1, sN + 1}.
Then sn ∈ [−M,M ] for every n ∈ N. �

Theorem 2. (Cauchy Convergence Criterion)
A sequence of real numbers converges if and only if it is a Cauchy sequence.

Proof. We prove each direction of the double implication.
(⇒) Assume that the sequence (sn) is convergent. Let ε > 0, and set s = lim sn.

Then there exists N ∈ N such that if n ≥ N , then |sn − s| < ε/2. Then for
m,n ≥ N , we have

|sm − sn| = |sm − s + s− sn|
= |sm − s|+ |sn − s|

≤ ε

2
+

ε

2
= ε.

(⇐) Assume that the sequence (sn) is a Cauchy sequence. Then it is bounded,
and so its limit superior and inferior exist as real numbers. By a previous proposi-
tion, it suffices to show that lim inf sn = limsupsn.

Let ε > 0. Then there exists N ∈ N such that if m,n ≥ N , then |sm − sn| < ε.
In particular, |sn − sN | < ε

2 for all n ≥ N , so sN + ε
2 is an upper bound for

{sn | n ≥ N}. Thus sup{sn | n ≥ N} ≤ sN + ε
2 , and therefore lim sup sn ≤ sN + ε

2 .
Similarly lim inf sn ≥ sN − ε

2 . Rearranging these inequalities gives

lim sup sn −
ε

2
≤ sN ≤ lim inf sn +

ε

2
,

or
0 ≤ lim sup sn − lim inf sm < ε.

Since ε is arbitrary, we have lim sup sn = lim inf sn. �
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7. Problems

Problem 1. Let (an)∞n=1 be a convergent sequence of real numbers, and let A =
{an | n ∈ N}. Show that limn→∞ an ≤ supA.

Problem 2. Let (an)∞n=1 be a sequence in [a, b], where a, b ∈ R and a < b. Show
that if (an) converges to p, then p ∈ [a, b].

Problem 3. Let (sn)∞n=1 be a sequence of nonzero real numbers such that
limn→∞ |sn| converges to a positive real number. Show that there exists m > 0
such that |sn| > m for all n. (This is a Lemma for Proposition 5).

Problem 4. Let (sn) and (tn) be sequences in R such that |sn| ≤ tn for all n and
lim tn = 0. Show that lim sn = 0.

Solution. Since |sn| ≤ tn, we have −tn ≤ sn ≤ tn.
Let ε > 0 and let N be so large that |tn − 0| < ε for n > N . Since

|tn − 0| = |tn| = | − tn| = | − tn − 0|,
then | − tn − 0| < ε for n > N . Thus lim−tn = 0.

The result follows by the Squeeze Law. �

Problem 5. Let (an) and (bn) be sequences in R such that (an) is bounded and
lim bn = 0. Show that lim anbn = 0.

Solution. Let M > 0 such that |an| ≤ M for all n ∈ N. Let ε > 0. Since lim bn = 0,
there exists N ∈ N such that for all n > N , |bn − 0| < ε

M . Then for n > N , we
have

|anbn − 0| = |an||bn| ≤ M
ε

M
= ε.

Thus lim anbn = 0. �

Problem 6. Construct sequences (an) and (bn) of positive real numbers, with
cn = anbn, satisfying

(0) limn→∞ bn = 0;
(1) lim inf cn = 1;
(2) lim sup cn = 2.

Problem 7. Let (an) be a sequence of positive real numbers satisfying a2
n+1 = an.

Show that (an) converges to 1.

Definition 6. Let A ⊂ R be an open interval. A function f : A → R is called
a contraction if there exists M ∈ R such that |f(a) − f(b)| ≤ M |a − b| for any
a, b ∈ U .

Problem 8. Let f : R → R be a contraction. Let (an) be a sequence of real
numbers which converges to p ∈ R. Show that lim f(an) = f(L).

Solution. Let ε > 0. Since f is a contraction, there exists M ∈ R such that
|f(a)− f(b)| < M |a− b| for all a, b ∈ R.

Since (an) converges to p, there exists N ∈ N such that |an − p| < ε
M for all

n > N . Since f is a contraction,

|f(an)− f(p)| < M |an − p| < M
ε

M
= ε

for all n > N . Thus f(an) → f(p). �
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Problem 9. Let (sn) be a sequence in R.
Show that lim sup |sn| = 0 if and only if lim sn = 0.

Solution. Suppose that lim sup |sn| = 0. Since (|sn|) is a sequence of nonnegative
numbers, so is every subsequence. The limit of a convergent sequence of nonnegative
numbers is nonnegative, and since lim inf |sn| is the limit of a subsequence, we have

0 ≤ lim inf |sn| ≤ lim sup |sn| = 0.

Thus lim inf |sn| = lim sup |sn| = 0, so (|sn|) converges to zero. Therefore (sn)
converges to zero.

Suppose that lim sn = 0. Then lim |sn| = 0; this tacitly implies that (|sn|)
converges, so its limit superior is equal to its limit. That is, lim sup |sn| = 0. �

Problem 10. Let (sn) and (tn) be sequences in R.
Show that lim sup(sn + tn) ≤ lim sup sn + lim sup tn.

Lemma 1. Let A,B ⊂ R be bounded above, with B ⊂ A. Then supB ≤ supA.

Lemma 2. Let A,B ⊂ R be bounded above, and set

A + B = {a + b | a ∈ A, b ∈ B}.
Then sup(A + B) = supA + supB.

Solution. Let Sm = {sn | n > m}, Tm = {tn | n > m}, and Um = {sn+tn | n > m}.
We have sup(Sm + Tm) = supSm + supTm by Lemma 2. But Um ⊂ Sm + Tm, so
supUm ≤ supSm + supTm by Lemma 1. Thus

lim sup(sn + tn) = lim(supUm)

≤ lim(supSm + supTm)

= lim(supSm) + lim(supTm)
= lim sup sn + lim sup tn.

�
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Problem 11. Let (sn) and (tn) be bounded sequences over nonnegative real num-
bers.
Show that lim sup sntn ≤ (lim sup sn)(lim sup tn).

Lemma 3. Let S, T ⊂ R be bounded sets of nonnegative real numbers. Define

ST = {st | s ∈ S, t ∈ T}.
Then supST = (sup S)(supT ).

Proof of Lemma. Let st ∈ ST . Then s ≤ supS and t ≤ supT . Since s and t are
nonnegative, st ≤ (supS)(supT ). Thus supST ≤ (supS)(supT ).

Suppose supST < (supS)(supT ). Then supST/ supT < supS. Select s ∈ S
such that supST/ supT < s < supS. Then sup ST/s < supT . Select t ∈ T such
that supST/s < t < supT . Then supST < st, a contradiction. �

Solution. Let Sm = {sn | n > m}, Tm = {tn | n > m}, and Um = {sntn | n > m}.
We have sup(SmTm) = (supSm)(supTm) by Lemma 3. But Um ⊂ SmTm, so
supUm ≤ supSm supTm by Lemma 1. Thus

lim sup(sntn) = lim(supUm)

≤ lim(supSm supTm)

= lim(supSm) lim(supTm)

= lim sup(sn) lim sup(tn).

�

Problem 12. Let (sn)∞n=1 be a bounded sequence of real numbers. Let v =
lim inf sn and u = lim sup sn. Show that for every ε > 0 there exists N ∈ N
such that if n ≥ N , then sn ∈ (v − ε, u + ε).

Problem 13. Let (sn) be a sequence of real numbers which converges to s ∈ R.
Let σn = 1

n

∑n
i=1 si. Show that (σn) converges to s.

Solution. Let τn = σn − s. It suffices to show that (τn) converges to zero. Note
that

τn =
1
n

n∑
i=1

si −
ns

n
=

1
n

n∑
i=1

(si − s).

Let N0 ∈ N be so large that |sn − s| < ε
2 for all n > N0. Let M =

∑N
i=1 |si − s|.

Then for n > N0, we have

|τn| ≤
M

n
+

1
n

n∑
i=N0+1

|sn − s| by ∆-inequality

<
M

n
+

1
n

(n−N0)
ε

2
summing n−N0 small numbers

<
M

n
+

ε

2
since

n−N0

n
≤ 1.

Now select N ∈ N with N > N0 which is so large that M
n < ε

2 . Then for n > N , we
have |τn| < ε

2 + ε
2 = ε. This shows that |τn| → 0 as n →∞. Thus lim τn = 0. �
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Problem 14. Let (an) and (bn) be a sequences of real numbers we converge to a
and b respectively. Let

µn =
a1bn + a2bn−1 + · · ·+ an−1b2 + anb1

n
.

Show that (µn) converges to ab.

Solution. Let νn = µn − ab. It suffices to show that (νn) converges to zero.
Since (ai) is a convergent sequence, is bounded; select M > 0 such that |ai| ≤ M .

Also note that for any sequence (si), we have
∑n

i=1 sn−i+1 =
∑n

i=1 si; this follows
from inductive use of commutativity.

Now

|νn| =
1
n
|

n∑
i=1

aibn−i+1 −
nab

n
|

=
1
n
|

n∑
i=1

(aibn−i+1 − ab)|

≤ 1
n

n∑
i=1

|aibn−i+1 − ab|

=
1
n

n∑
i=1

|aibn−i+1 − aib + aib− ab|

≤
∑n

i=1 |aibn−i+1 − aib|
n

+
∑n

i=1 |aib− ab|
n

≤ M

∑n
i=1 |bn−i+1 − b|

n
+ b

∑n
i=1 |ai − a|

n

= M

∑n
i=1 |bi − b|

n
+ b

∑n
i=1 |ai − a|

n
.

Let τn = M
Pn

i=1 |bi−b|
n + b

Pn
i=1 |ai−a|

n . By the Problem 13,

lim
n→∞

τn = M lim
∑n

i=1 |bi − b|
n

+ b lim
∑n

i=1 |ai − a|
n

= M · 0 + b · 0 = 0.

Since 0 ≤ |νn| ≤ τn and lim τn = 0, we have |νn| → 0 so lim νn = 0. �
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